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I thank Raymond Fletcher for his elegant demolition of
my crude adaptation to counterflow of Turcotte and Schu-
bert’s (1982) expression for channel flow. I also thank
Sonder for the same (and other) correction(s) incidental to
developing her very welcome alternative explanation for the
same suite of curves that I found empirically to forward
model shear zones and fit several geological examples.

I apologise to everybody for having unintentionally
violated Newton’s third law and for introducing no-slip
boundaries to the outer margins of shear zones. The referees
are absolved of responsibility for my mistake because I added
the flawed section on dynamics after reading their comments.

Leslie Sonder’s contribution allows me to claim that
some good came from my flawed attempt to read rock rheol-
ogy from displacement profiles associated with ductile shear
zones. This progress comes not only from her alternative
theory but also from the partial convergence between field
geologists beginning from frozen kinematics and geophysi-
cists focusing on the dynamics and some key geophysical
references. I adopt here the terminology of S or J curves
across symmetric and asymmetric shear zones respectively.
I stand corrected about J curves along ocean transforms but
note that my analysis resulted in the samen� 3 for the
ductile ocean floor as the literature quoted by Sonder. As
pointed out in Talbot (1999) several of the examples there fit
the curves used only locally.

Changing rock rheologies across shear zones has long
been advocated in general terms so I congratulate Sonder
on her beautiful theory based on the simplest drive of all, the
relative motions between two sides of asingleshear zone. I
do so on the grounds that it satisfies a simple criterion that
can be used to check any new theory of ductile shear,
whether or not it make sense of the S or J curves found
along natural shear zones. However, I consider that Sonder
threw the baby out with the bathwater when she dismissed a
pressure-driven drive and replaced the no-slip counterflow

boundary by a simple change in sign in velocity. Sonder
changedC in her expression 2 whereas the Talbot (1999)
aimed to change onlyn.

The asymmetric shear zones on either side of diapiric
contacts illustrate that at least some natural boundary shears
can be driven by pressure gradients differing across a shared
no-slip boundary. Columnar or wall-shaped diapirs (Fig. 1a)
can be considered as ductile flows (e.g. of salt) along 3D
pipes or 2D channels of ductile materials (e.g. clastic sedi-
ments). The denser country rocks sink into the deep layer of
salt driving it upward along a different pressure gradient. This
counterflow is a special case in the sense that it is asymmetric
and along a material boundary that is visible in the usual
reference frame for shear zones (Fig. 1b). I want to do the
same for symmetric counterflow boundaries between initially
identical materials without being specific about the boundary
conditions that introduce the counterflow boundary outside
the usual reference frame (see Fig. 1c and d).

By replacing my counterflow boundary by a change in
sign of velocity, Sonder misses the point that deformation
can generate new geological boundaries out of nowhere.
Just as shear of brittle rocks can generate spontaneous
new slip boundaries called fractures, I assumed that shear
of ductile rocks can generate spontaneous new no-slip
boundaries that I call counterflow boundaries. Whatever
the driving forces, I still consider that naturalS curves
record the retarding forces that develop across two boundary
shears, one on either side of a single shared no-slip bound-
ary. (I should have stuck to reference frames and drawn my
original fig. 2 as Fig. 2 here.)

I defend here my approach in Talbot (1999) on the sole
basis of empirical fits between one or other the curves in a
particular set (Fig. 2) with displacement curves either side of
ductile shear zones in silicate rocks with very different
mineralogies (and ages) deformed in a wide range of envir-
onments over an enormous range of scales. Because these
fits are on scales much larger than the molecular mechan-
isms that control deformation mechanisms, I consider these
empirical fits to indicate a rheological factor more universal
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than grain size, water content or temperature and attributed
them to the general rheological description ofn. Since
Talbot (1999), I have found that the same curves fit experi-
mental shear zones in pseudoplastic polymers in which
changes in water content, grain size and temperature are
irrelevant (Talbot, in prep).

The different approaches adopted in Talbot (1999) and
Sonder (2000) could both have elements of truth. I was
trying to account for the localisation of strain by introducing
a new boundary to a general class of flow in a general class
of rheologies. Flow retardation along a single counterflow
boundary localises strain in two boundary shears to degrees
dependent upon then-value(s) of the fluids on either side.
Neglecting my flawed dynamics, I showed empirically that

constant or variable syn-shearn-values can be constrained
from the geometry of S or J curves developed in natural
counterflows. Sonder (2000) then goes on to show how
particular strain weakening mechanisms across a single
shear zone can account for the same n values specified by
the shapes of the S or J curves.

In summary, I apologise again for failing to find the
correct dynamic formulation for a process (different from
that treated by Sonder, 2000) whereby strain gradients
acrosstwocoupled shear zones are attributed to new bound-
ary conditions that can localise a wide range of weakening
processes to a degree expressed byn, the stress sensitivity of
the strain rate. I therefore encourage readers to succeed
where I failed.
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Fig. 1. (a) Boundary shears on either side of diapiric contacts illustrate that at least some counterflows can be driven by different pressure gradients either side
of no-slip counteflow boundaries. (b) This no-slip counterflow boundary was generated outside the usual reference frame used for shear zones but is imported
to account for the change in sign of retarding forces across it. (c) A counteflow boundary develops in the southern continent (white) after the promontory is
sutured to the northern continent (grey). Identical rocks are retarded in two (symmetric) boundary layers along a shared no slip counterflow boundaryimported
into this reference frame.

Fig. 2. This rearrangement of Turcotte and Schubert’s (1980) curves for channel flow fits a wide range of shear zones in rocks. The central horizontal axis
represents a no-slip (counterflow) boundary generated outside this reference frame and the upper and lower axes indicate where the retardation effects cease
across each boundary layer.
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